
Large Scale Aeroelastic Data for Design of Rotating 

Blades using Navier-Stokes Equations   
 

Guru P. Guruswamy * 

NASA Advanced Supercomputing Division 

Ames Research Center, Moffett Field, CA 

 

Abstract 

 

   Bending-torsion flutter boundaries for rotating blades are computed using unsteady aerodynamic data 

obtained by time accurately solving the Navier-Stokes equations. A modal approach is used for computing 

the flutter boundary. Flutter speeds are computed by solving eigenvalue equations that track down the 

system damping to identify flutter point. Aerodynamic data required for the analysis is computed by time 

accurately integrating aerodynamic equations while the blades are undergoing modal motions at various 

oscillating frequencies. Validity of the approach is established by comparing the flutter speed results with 

those measured for a non-rotating blade. Results are demonstrated for a typical rotating blade. Parallel 

computing resources are utilized to cope with computational costs associated with use of the Navier-Stokes 

equations.  

 

Nomenclature 

 

c  =  chord length  

Cl, Cm  = sectional lift and moment coefficients   

{d}  =  displacements 

{f}, {F}  =  actual and modal aerodynamic force vectors  

g  = structural damping coefficient 

h  =  generalized displacements 

k  = reduced frequency, c/U 

M  = Mach number 

q  =  dynamic pressures, 0.5 U
2 

R, r  =  blade span, distance from root 

[s], [S]  =  actual and modal stiffness matrices 

U, Uf  = blade speed of a given section, varying and at flutter  

[w],[W]  = actual and modal mass matrix  

t  =  time in seconds 

  =  air density 

, f, h,  = general, flutter, bending, torsional frequencies in rad/sec 

  = rotating speed in radians per second 

[Φ]  = mode shape matrix 

  = flutter Eigen value 

∞  = represents free stream condition 

  = air to mass density ratio 

 

I Introduction 

 

   The evaluation of flutter characteristics of rotor blades is critical to avoid structural failures [1]. Flows 

over rotating blades are often dominated by complexities such as blade-vortex interactions and moving 

shock waves [2]. Wind tunnel experiments in this area are rare due to the high expenses involved, and 

flight tests are almost impossible due to high risk [3]. As a result, computational procedures have become 

essential to address the dynamic aeroelastic problems of rotating blades. 
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   Currently, computational methods based on linear aerodynamic codes are in routine use for computing 

the aeroelastic characteristics of rotating blades [4]. However, methods based on the Navier-Stokes flow 

equations are needed to model flow complexities such as blade-vortex interactions and moving shock 

waves that cannot be modeled using the linear aerodynamic equations of motion.  

 

   The calculation of aeroelastic responses using computational fluid dynamics (CFD) and computational 

structural dynamics (CSD) methods began with the development of the Transonic Small Perturbation (TSP) 

theory [5]. An original approach to compute flutter boundaries based on CFD-TSP, using both coupled 

(time-domain) and uncoupled (frequency-domain) CFD/CSD methods with cross validations, is presented 

in Ref. [6]. These methods were extended to 3D cases, in the frequency domain (i.e., uncoupled) using TSP 

[7] and the time domain (i.e., coupled) using the Euler equations [8].  Such CFD based time-domain 

aeroelastic method developed in early 90’s [8] is successfully applied for flutter boundary identification [9]. 

 

   The process of generating aeroelastic loads for rotating blades by correcting the look-up table-based 

airloads using loads from the Navier-Stokes equations is in routine use [10]. This procedure, which uses 

beam finite elements for structural deflections, is also called the loose coupling approach. Recently, 

Euler/Navier-Stokes based time-accurate aeroelastic computations for helicopter blades have been 

computed. Reference [11] presents an application for an isolated, single blade using a time integration 

approach similar to that shown for fixed wings [8]. This time response approach is computationally more 

expensive than the frequency response approach for computing flutter boundaries, as responses need to be 

computed for changes in every design parameter.  

 

   Several parameters, such as advance ratio, angle of attack, rotating speed and structural properties, need 

to be considered for the design. Under certain assumptions, a good prediction of a flutter boundary can be 

made using the frequency domain (uncoupled approach) [6]. The primary assumption in the frequency 

domain approach is that the aerodynamic loads can be linearly superimposed among modes, and because 

flutter starts as a small perturbation phenomenon. This approach has served as a valid tool for computing 

flutter boundaries [7].  

 

   This paper describes a method for computing the bending-torsion flutter boundaries for rotating blades, 

using the frequency domain approach. The unsteady, aerodynamic data is obtained by time accurately 

solving the Navier-Stokes equations while the blade is undergoing oscillatory rotations. A modal approach 

is then used to compute the flutter boundary.  Flutter speeds are computed using an Eigenvalue approach 

that tracks down system damping to identify flutter [12]. Aerodynamic data required for the analysis is 

computed by time accurately integrating the aerodynamic equations while the blade is undergoing modal 

motions at various oscillating frequencies. Validity of the approach is established by comparing the flutter 

speed results with those measured for the non-rotating blades. Results are demonstrated for a typical 

rotating blade. Parallel computing resources are utilized to cope with computational costs associated with 

use of the Navier-Stokes equations. 

 

II Approach 

 

   Following the finite element formulation, Lagrange’s equation of motion is defined as: 

  

 }{}]{[}]{[ fdsdw        (1) 

 

where [w], and [s] are the mass and stiffness matrices, respectively, and {d} and {f} are the displacement 

and force vectors.  

 

   Based on Raleigh-Ritz method the governing aeroelastic Eq. (1) can be re-formulated using modes.  In 

this approach aeroelastic displacements at any time are expressed as functions of a finite set of modes 

using: 

 

}]{[}{ hd          (2) 
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where ][  is the modal shape matrix and {h} is the generalized displacement vector.  

 

Applying (2) to (1) yields:  

 

}{}]{[}]{[ FhShW            (3) 

 

where modal mass is ]}[{][][ wW T
         (4a) 

 

            and modal stiffness is ]}[{][][ sS T
      (4b) 

 

The modal force vector is obtained by perturbing the structures, which results in: 

 

}{][}{ fF T
        (5a) 

}]{[][}{ dPqF T
        (5b) 

}]{][[][}{ hPqF T
       (5c) 

 

where q is the dynamic pressure, defined as 
22/1 Uq , is the free stream air density, and U is the 

speed of the blade. The diagonal force coefficient matrix [P] is the integrated airloads over blade span due 

to perturbing the blade by the modal displacements. Thus, the generalized aerodynamic force Qij is written 

as: 

 

}]{[}{ j
T

iij PqQ        (6) 

 

   Qij represents the modal force acting in the ith mode caused by pressure generated by the modal motion of 

jth mode. Since the blade speed varies along the radius values at 75 percent span station are selected for 

reference [13].  

 

   A flutter boundary is computed by using the U-g (velocity-damping) method [12]. The U-g method uses 

the fact that the flutter starts as a harmonic motion with small amplitude, so that the generalized 

displacements {h} take the form: 

 

tiehh }{}{          (7) 

 

where  is the circular frequency at flutter. Following the procedure in Ref. [12], structural damping, g, is 

introduced by replacing with complex value (1+ig).  

 

   For both fixed wings and rotor blades, a bending-torsion flutter boundary determines structural integrity. 

Bending-torsion flutter can occur for rotating blades with low torsional stiffness, as well as for cases such 

as transonic flow where the center of pressure is away from the elastic axis [14].  

 

   In the design phase, it is important to assure the safety of a blade by knowing its bending-torsion flutter 

boundary. In this work, Eq. (2) is modified to compute the bending-torsion flutter of rotating blades. As 

suggested in Ref. [13], the 75 percent radial station is considered as a reference section to compute the 

flutter boundary. The reduced frequency kr is defined as 4 fc/3 R, where f is the oscillatory flutter 

frequency, c is the chord length,  is the rotating speed in radians per second, and R is the blade radius. 

Equation (2) can be rewritten as: 
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2

1

2

12
][][][

h

h
S

h

h
AWkr

      (8) 

where 1h  and 2h  are generalized displacements corresponding to bending and torsional modes, 

respectively. Also defined are the air-to mass density ratio [13] )( 2
11 RcW  and  

2

1 e

e
W         (9) 

where )/(2 1112
2 cWW  and )/(4 2

1122 cWWe . 

 

   Since the blades have large aspect ratios, the assumed bending mode and torsion modes [13] are defined 

as Φ1 = (r/R)
2 
and Φ2 = (r/R), respectively, where r is the distance from the blade rotating axis. Then, 

elements of the aerodynamic matrix [A] can be defined by 

rQA
R

2
1

0

1111
 

rQA
R

21

0

1212
 

rQA
R

12

0

2121
 

rQA
R

2
2

0

2222
 

Assuming h and α are bending and torsion oscillatory frequencies, yields 

 

22

2

)(

0

0

)(
][

f

fh
S         (10) 

 

The eigenvalue  in Eq. (8) is defined as:  

 
222 4/)1( Ucig f    

          (11)  

The eigenvalue  in Eq. (8) is solved to compute the non-dimensional flutter speed: 

cUU 2 and flutter reduced frequency Rck ff 3/4 .  

   For a given rotating speed the U-g approach needs aerodynamic forces at various oscillatory-reduced 

frequencies for selected modes. Oscillatory frequencies are varied while the blade is rotating at a given 

speed . Once the airloads are computed for two modes in the form of real and imaginary values at various 

frequencies, the complex eigenvalue in Eq. (8), is solved. Flutter speed is determined when the damping 

changes from a positive to a negative value. These computations are repeated for different rotating speeds. 

 

   Airloads are computed by solving the Navier-Stokes equations using the diagonal form of the Beam-

Warming implicit finite difference method [15], available in the latest version of NASA’s the OVERFLOW 

code [16] that utilizes the Spalart-Allmars turbulence model.  This version is suitable for flexible rotating 

blades.  
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III Solution Procedure on Parallel Computers 

 

   The computation of flutter boundaries needs unsteady airloads from CFD at different rotating speeds, 

oscillatory frequencies, and mode shapes. Unsteady airload computations using the Navier-Stokes 

equations for multiple cases need large amounts of computer time. The computational resources issue can 

be alleviated by using parallel computers. The present computational scenario is ideal for massively parallel 

computations. In the work described here, computations are made on NASA’s Pleiades supercomputer with 

the Linux operating system-based MPIexec utility [17]. MPIexec runs multiple cases in parallel within a 

single job environment. Therefore, the wall-clock time for multiple cases will be essentially equal to that 

for a single case [17] if adequate processors are utilized.  

 

   The mode shapes are generated for bending and torsion modes for various frequencies. Input for the CFD 

is generated for different rotating speeds. Airloads are computed in parallel for various rotating speed, 

mode shape, and modal frequency. Real and imaginary values of unsteady airloads are computed using 

Fourier analysis. These airloads are used as input to the eigenvalue flutter solution module, MODFLU, 

which solves Eq. (8). Since many steps are involved in computing the flutter speed, the procedure is 

streamlined within an Unix script, RUNMOD, similar to the RUNPBS script presented in Ref.  [17].  

 

IV Results 

 

A. Validation for Non-Rotating Blades 

 

   The method developed here is first validated for non-rotating simple rectangular blades that have 

measured unsteady loads and flutter boundary data. Flow computations are made using a single C-H grid 

with 250K grid points. This type of grid topology that has a moderate grid size yields satisfactory unsteady 

results for simple rectangular wings [11].  Correct prediction of flutter speed requires accurate unsteady 

airloads. The accuracy of the finite difference solver used for flow solutions is validated by computing 

airloads for a flapping blade with a 6 percent circular arc [18]. Figure 1 shows the comparison of the 

magnitude and phase angles of unsteady lifting pressures with wind tunnel test data at a 70 percent radial 

station. The 70% station is selected for comparison since it is the station closest to the 75% station typically 

recommended [13] for comparison flutter characteristics between of rotating and non-rotating wings. The 

blade is flapping with a reduced frequency k, (defined as c/U) = 0.26 and M∞ = 0.90. Computed results 

show good comparison with measured data. 

 

 

 

 

 

 

 

 

    

 

    (a) Magnitude     

(a)                                                                                              (b)  

 

Fig. 1 Validation of magnitude (a) and phase angles (b) of unsteady pressures at 70% span for a flapping 

blade, Ref. 18. 

 

 

   Computation of flutter boundary using the RUNMOD script is validated for a non-rotating blade that has 

wind tunnel flutter-boundary data [19] for a blade with an aspect ratio of 5 and a parabolic arc with a 

thickness of 6 percent. Flutter speeds are computed for ten Mach numbers ranging from 0.7 to 1.2 using 

five frequencies of flapping and torsional modes. The airloads for 100 cases are obtained in a single run 

using the MPIexec utility in RUNMOD. The total wall-clock time is about 30 minutes using 100 
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processors.  Figure 2 shows a plot of speed (U/b ) vs. structural damping for both modes at M ∞= 0.80. 

Flutter occurs when damping g of mode 1 changes from positive to negative.  

 

 
 

Fig. 2 Plot of scaled speed vs system                                    Fig. 3 Validation of flutter boundary 

           damping coefficient at Mach 0.8.                                        of a non-rotating blade, Ref. 19. 

 

   Figure 3 shows a comparison of flutter speed (Uf/b ) between the computed and measured data. Both 

agree in trend and values. The flutter speed decreases with the increase in Mach number until about Mach 

0.95, and then it starts rising as the Mach number reaches supersonic speed. The computed flutter speeds 

are higher than that measured until about Mach 0.97 then it is lower. Flutter speed appears to flatten out at 

low subsonic and high supersonic Mach numbers.  

 

   Results in figures 1 and 3 show that the RUNMOD procedure using the Navier-Stokes data and the 

eigenvalue flutter speed solver of Eq. (8) are verified for non-rotating blades. The remainder of the paper 

demonstrates results for a typical rotating blade.  

 

B. Rotating Blade Results 
 

1. CFD Grid 

 

   All computations are made for a rectangular blade that has an aspect ratio of 10, with a NACA0012 

airfoil section. The blade is modeled using the C-O grid with cap grids for the tip and root. The near-body 

grids for the blade, root, and tip have 1000K, 260K, and 150K grid points, respectively. The normal grid 

spacing on the blade surface is about 8x10
-5 

of the chord. The total grid, including the outer grids, is about 

1800K points. The outer grid boundaries are located at about 10 times the radius R of the blade. This 

topology is based on the grid that was successfully used to validate a rotor system configuration [16]. A 

portion of the grid near the tip is shown in Fig. 4.  

 

   The mode shape data is generated using assumed modes for bending and torsional modes. The ratio of 

bending frequency to torsional frequency is set to 0.3, a typical value for rotor blades. The mass center is at 

45 % chord length, and the elastic axis is at 0.25 % chord. The oscillating frequency  of the blade is 

varied as a percentage of rotating frequency . A plot of the tip motions for various frequency ratios with 

respect to azimuth are shown in Fig. 5 for the twisting mode. Using these mode shapes for flapping and 

bending modes, prescribed motion files for the CFD code are generated [16]. The collective angle is set 

to10 degrees and tip amplitudes are set to 1 degree. For bending modes, tip amplitudes are set to 0.05 

percent of the blade span.  
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Fig. 4 Portion of the grid near the tip.                              Fig. 5 Twist mode shapes for rotating blade. 

 

2. Time Step Convergence  

 

   Time step convergence is established based on the rotating speed. The blade is rotated in increments of 

720 steps per revolution (NSPR), starting from NSPR = 720. It is oscillated in its first torsional mode with a 

frequency twice the rotational frequency, i.e.,  = 2 . Figure 6 shows plots of average sectional loads with 

respect to radius. Spanwise loads converge at NSPR = 3600. The rest of the computations are made using 

NSPR = 3600.  

 

 

3. Flutter Boundary Computations 

  

   Flutter speeds are computed for 10 rotating speeds, from = 55 to 100, in increments of five for two 

types of mode at five oscillating frequencies. The oscillatory frequencies are 1.6, 1.8, 2.0, 2.2, and 2.4 times 

the rotating frequencies. This leads to computing unsteady airloads for 100 cases. Each case requires about 

23 hours of CPU time on a single node of the Pleiades supercomputer [17]. Using MPIExec, all cases run in 

parallel within about 24 hours, using 100 Pleiades nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Average sectional lifts for increasing NSPR. 
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   Figure 7 shows plots of flutter speed vs. rotating speed. Flutter speeds are also shown for the rotating 

blade without accounting for change in the stiffness due to centrifugal force. The differences are more 

pronounced for higher rotating speeds, as expected. Flutter boundaries are also compared with an 

equivalent fixed blade using the flow characteristics at 75 % radial station. The flutter boundary for the 

fixed blade is lower than that for rotating blade including the effect of centrifugal force. This may be 

attributed to lower stiffness due to the absence of added centrifugal stiffness in non-rotating blade. The 

corresponding results for flutter frequency are shown in Fig. 8. The centrifugal force has less influence on 

frequency than on flutter speed, and the effect appears to be on the same order for all rotating speeds 

considered.  The flutter frequency for the fixed blade is higher than rotating blade up to about  = 75 then 

it is lower.  

 
  

FigFig. 7 Flutter boundary speed vs. rotating speeds.                        Fig. 8 Flutter frequency plots.  

 

 

V Conclusions 

 

   A procedure to compute the bending-torsion flutter boundaries of rotating blades using unsteady loads 

from the Navier-Stokes flow equations is presented. A frequency-domain mathematical formulation that 

results in eigenvalue equations based on airloads obtained by from a Navier-Stokes solver is formulated. 

Large computational requirement associated with the use of high-fidelity Navier-Stokes equations is 

addressed using parallel computers. Unsteady airloads and flutter speeds for non-rotating blades predicted 

compare well with measured data. Results demonstrated for a typical rotating blade establishes the practical 

use of the procedures developed. Equations formulated are suitable for adding additional degrees-of-

freedom such as lead-lag motion.  
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